TOSHIBA

TOSHIBA Field Effect Transistor Silicon P/N Channel MOS Type (P Channel U-MOSII/N Channel U-MOSII)

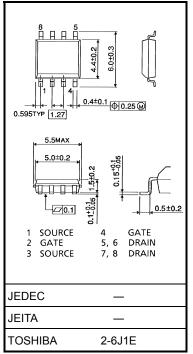
PC8403

Motor Drive Applications

Notebook PC Applications

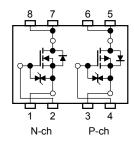
Portable Equipment Applications

- Low drain-source ON resistance: P Channel RDS (ON) = 45 m Ω (typ.) •
- N Channel RDS (ON) = $25 \text{ m}\Omega$ (typ.) High forward transfer admittance: P Channel $|Y_{fs}| = 6.2 \text{ S}$ (typ.)


Low leakage current: •

N Channel $|Y_{fs}| = 7.8 \text{ S (typ.)}$

- P Channel IDSS = $-10 \mu A (VDS = -30 V)$ N Channel IDSS = $10 \mu A (VDS = 30 V)$
- Enhancement mode
 - : P Channel V_{th} = -1.0~-2.2 V (V_{DS} = -10 V, I_D = -1 mA)
 - : N Channel V_{th} = 1.3~2.5 V (V_{DS} = 10 V, I_D = 1 mA)


Absolute Maximum Ratings (Ta = 25°C)

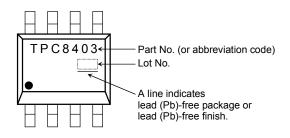
1		1				
Characteristics		Symbol	Rat	Unit		
0	Cymbol	P Channel	N Channel	onic		
Drain-source v	Drain-source voltage		-30	30	V	
Drain-gate vol	tage (R _{GS} = 20 kΩ)	V _{DGR}	-30	30	V	
Gate-source v	oltage	V _{GSS}	±20	±20	V	
Drain current	DC (Note 1)	ID	-4.5	6	А	
Drain current	Pulse (Note 1)	I _{DP}	-18	24	~	
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	1.5	1.5	w	
(t = 10s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D(2)}	1.1	1.1		
Drain power dissipation	Single-device operation (Note 3a)	P _{D(1)}	0.75	0.75		
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D(2)}	0.45	0.45		
Single pulse avalanche energy		E _{AS}	26.3 (Note 4a)	46.8 (Note 4b)	mJ	
Avalanche current		I _{AR}	-4.5	6	А	
Repetitive avalanche energy Single-device value at operation (Note 2a, 3b, 5)		E _{AR}	0.11		mJ	
Channel temperature		T _{ch}	150		°C	
Storage tempe	Storage temperature range		-55~150		°C	

Weight: 0.080 g (typ.)

Circuit Configuration

Note: Note 1, Note 2ab, Note 3ab, Note 4and Note 5: See the next page.

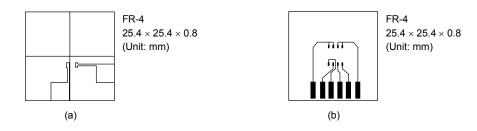
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


This transistor is an electrostatic-sensitive device. Please handle with caution.

Unit: mm

Thermal Characteristics

Characteristics	Symbol	Max	Unit		
Thermal resistance, channel to ambient (t = 10s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	83.3		
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	114	°C/W	
Thermal resistance, channel to ambient	Single-device operation (Note 2a)	R _{th (ch-a) (1)}	167	0,00	
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 2b)	R _{th (ch-a) (2)}	278	ſ	

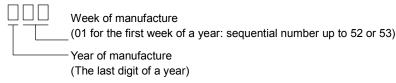

Marking

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2:

- a) Device mounted on a glass-epoxy board (a)
- b) Device mounted on a glass-epoxy board (b)

Note 3:


- a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
- b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).

Note 4:

- a) $V_{DD} = -24$ V, $T_{ch} = 25^{\circ}C$ (Initial), L = 1.0 mH, $R_G = 25 \Omega$, $I_{AR} = -4.5$ A
- b) $V_{DD} = 24 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (Initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = 6.0 A
- Note 5: Repetitive rating: pulse width limited by maximum channel temperature

Note 6: • on lower left of the marking indicates Pin 1.

⅔ Weekly code: (Three digits)

P-channel

Electrical Characteristics (Ta = 25°C)

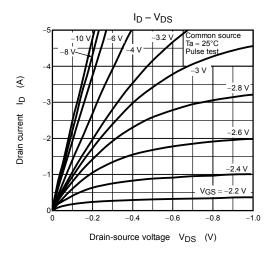
Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0~V$	_		±10	μA
Drain cut-OFF cu	rrent	I _{DSS}	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	_	-10	μA
Drain-source breakdown voltage		V (BR) DSS		-30	_	_	v
		V (BR) DSX		-15	_	_	
Gate threshold vo	oltage	V _{th}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$	-1.0	_	-2.2	V
Drain-source ON	rogiatanag	D	$V_{GS} = -4.5 \text{ V}, I_D = -2.2 \text{ A}$		66	90	mΩ
Drain-source ON	resistance	R _{DS (ON)}	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$	_	45	55	
Forward transfer	admittance	Y _{fs}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$	3.1	6.2		S
Input capacitance		Ciss	V_{DS} = –10 V, V_{GS} = 0 V, f = 1 MHz	_	940		pF
Reverse transfer capacitance		C _{rss}		_	270		
Output capacitance		C _{oss}		_	390		
Switching time	Rise time	tr	$V_{GS} \stackrel{0}{} V \stackrel{1}{} I_D = -2.2 \text{ A}$ $V_{GS} \stackrel{0}{} V \stackrel{1}{} I_D = -2.2 \text{ A}$ $V_{OUT} \stackrel{1}{} V \stackrel{1}{} I_D = -2.2 \text{ A}$ $R_L = 0.8 \Omega$ $V_{DD} \simeq -15 \text{ V}$		13	_	ns
	Turn-ON time	t _{on}		_	21	_	
	Fall time	t _f		—	25	_	
	Turn-OFF time	t _{off}	Duty \leq 1%, t _w = 10 µs		73	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq -24 \text{ V}, \text{ V}_{GS} = -10 \text{ V},$	_	18	_	nC
Gate-source charge 1		Q _{gs} 1	$I_D = -4.5 \text{ A}$	—	4	—	
Gate-drain ("miller") charge		Q _{gd}		_	4	_	

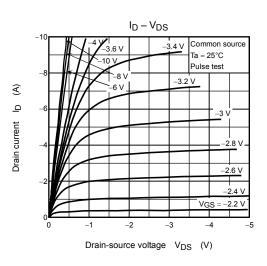
Source-Drain Ratings and Characteristics (Ta = 25°C)

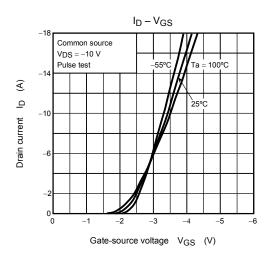
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	—	_	-18	А
Forward voltage (diode)		V _{DSF}	$I_{DR} = -4.5 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	_	_	1.2	V

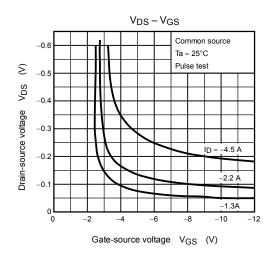
N-channel

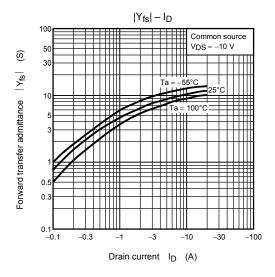
Electrical Characteristics (Ta = 25°C)

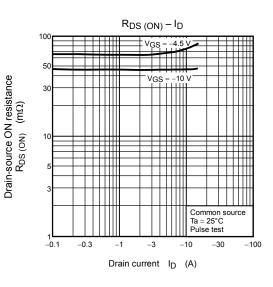

Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 V, V_{DS} = 0 V$			±10	μA
Drain cut-OFF cu	irrent	I _{DSS}	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	_	10	μA
Drain-source breakdown voltage		V (BR) DSS	$I_{D} = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30	_	_	v
		V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	_	_	v
Gate threshold ve	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$	1.3		2.5	V
	registeres	D	$V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$		38	46	
Drain-source ON resistance		R _{DS (ON)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3 \text{ A}$		25	33	mΩ
Forward transfer admittance		Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 3 \text{ A}$	3.9	7.8		S
Input capacitance		C _{iss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	_	850		pF
Reverse transfer capacitance		C _{rss}		_	180		
Output capacitance		C _{oss}		_	270		
Switching time	Rise time	tr	$V_{GS} \begin{array}{c} 10 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} I_D = 3.0 \text{ A} \\ 0 \text{ V} \\ 0 \text{ V} \end{array} \begin{array}{c} 0 \text{ V} \\ 0 \text$	_	11	_	ns
	Turn-ON time	t _{on}		_	18	_	
	Fall time	tf		_	6.5	_	
	Turn-OFF time	t _{off}	Duty $\leq 1\%$, t _w = 10 µs		27	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq 24 \text{ V}, \text{ V}_{GS} = 10 \text{ V},$ $I_D = 6 \text{ A}$	_	17	—	
Gate-source charge 1		Q _{gs} 1		_	3	_	nC
Gate-drain ("miller") charge		Q _{gd}			4		

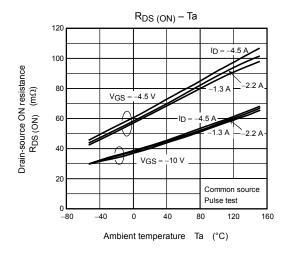

Source-Drain Ratings and Characteristics (Ta = 25°C)

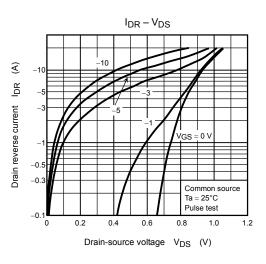

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_	_	24	А
Forward voltage (diode)		V _{DSF}	$I_{DR} = 6 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

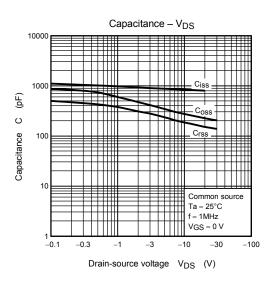

TOSHIBA

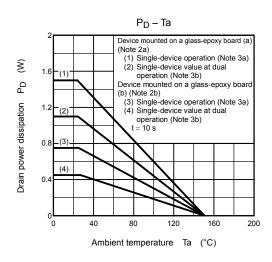

P-channel



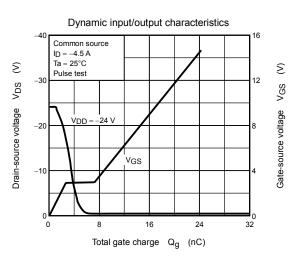


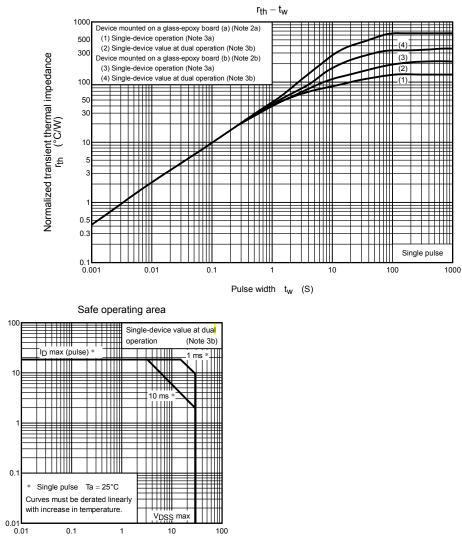






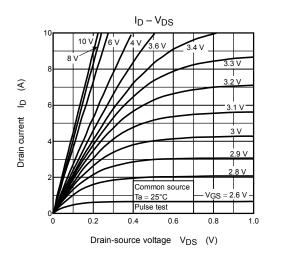
P-channel

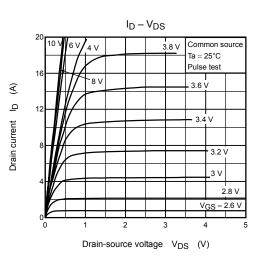


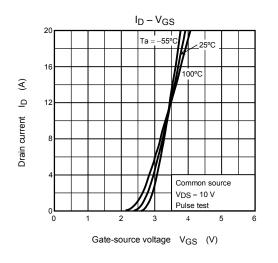


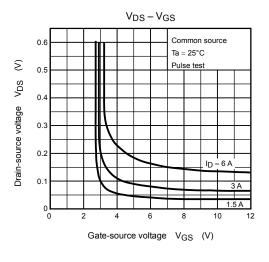
P-channel

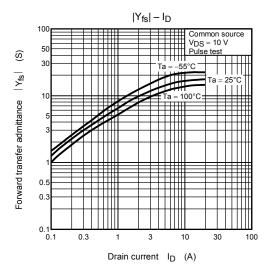
3

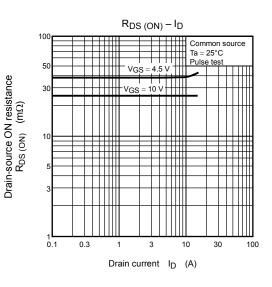

₽

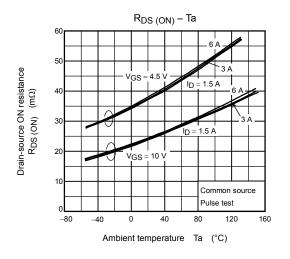

Drain current

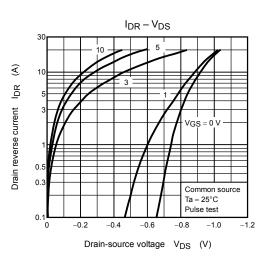


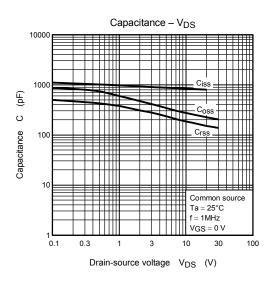

Drain-source voltage V_{DS} (V)

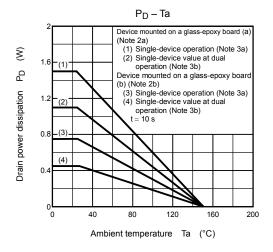

N-channel

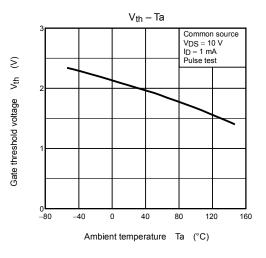


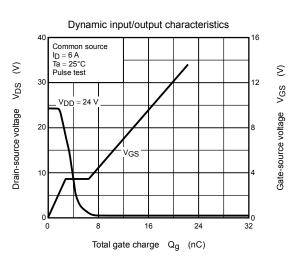


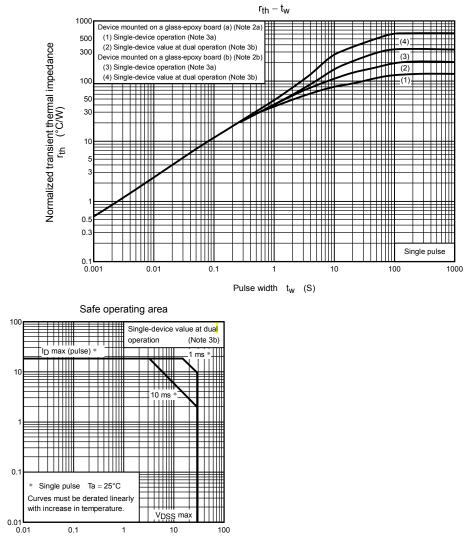





TOSHIBA


N-channel





N-channel

€

₽

Drain current

Drain-source voltage V_{DS} (V)

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.